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Abstract A viscoelastic model of the K-BKZ (Kaye, Tech-
nical Report 134, College of Aeronautics, Cranfield 1962;
Bernstein et al., Trans Soc Rheol 7:391–410, 1963) type is
developed for isotropic biological tissues and applied to the
fat pad of the human heel. To facilitate this pursuit, a class
of elastic solids is introduced through a novel strain-energy
function whose elements possess strong ellipticity, and there-
fore lead to stable material models. This elastic potential –
via the K-BKZ hypothesis – also produces the tensorial struc-
ture of the viscoelastic model. Candidate sets of functions are
proposed for the elastic and viscoelastic material functions
present in the model, including two functions whose origins
lie in the fractional calculus. The Akaike information crite-
rion is used to perform multi-model inference, enabling an
objective selection to be made as to the best material function
from within a candidate set.
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1 Introduction

The human heel is comprised of skin, a fat pad, the origin
of the plantar aponeurosis tendon and the calcaneal bone.
Collectively, the soft tissues therein constitute the heel pad.
The heel pad is our body’s natural shock absorber, dissipating
impulses introduced into the body during normal activity, and
thereby attenuating the forces that are transmitted up through
the body’s skeletal structure (Cavanagh et al. 1984).

NASA has a need to understand how much force is being
transferred into the load-bearing bones of the body during
exercise so that effective countermeasure protocols can be
developed to help avert bone loss in astronauts during long
space missions (Lang et al. 2004). Current devices that mea-
sure in-shoe forces beneath the heel have recorded forces
that exceed twice the body weight when an astronaut ran on
a treadmill on Earth; whereas, when running on an identical
treadmill located within the International Space Station, us-
ing the same in-shoe transducers and a harness attached at the
waist pushing the astronaut against the treadmill, maximum
forces of about one and one-half times the body weight were
recorded (Cavanagh et al. 2005). To determine the impact
force that is actually being transmitted to bone will require
numerical analysis. To be able to run such an analysis will
require material models for the soft-tissue constituents of the
heel pad. Here we develop a viscoelastic material model for
the human calcaneal fat pad.

Although the fractional calculus1 has enjoyed wide appli-
cation in synthetic polymer rheology (see Podlubny 1999,
pp. 268–277, for a brief literature review), it has attracted
limited attention in the field of biomechanics: Suki et al.
(1994) found the pressure/volume response of a whole lung
to be aptly characterized by a Newtonian fractional-order
viscoelastic (FOV) material model with a fractional order of

1 Calculus is the study of properties of functions in one or more
variables, using derivatives and integrals. Fractional calculus extends
the classic study of integer-order derivatives and integrals to include
derivatives and integrals of non-integer order, e.g., dπy/dxπ .
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evolution of 0.1;2 his colleagues, Yuan et al. (1997, 2000),
studied lung tissue and found its fractional order of evolution
to be about the same, viz., 0.075; while Chen et al. (2004)
applied the same model to agarose gels used for culturing
tissues, especially cartilage, and found its value to be about
0.03. These are all values close to that of ideal elasticity,
where the order of evolution is 0. In a study of charge dynam-
ics in protein molecules, Glöckle and Nonnenmacher (1995)
derived a kinetic equation in the form of a fractional-order
integral equation (i.e., a Volterra equation of the second kind
with an Abel power-law kernel) and found the charge relax-
ation in myoglobin to be accurately described by a formula
where the fractional order of evolution was set at −0.4.3 In
papers by Carew et al. (2003) and Doehring et al. (2004),
the response of aortic heart valves to 1D experiments has
been shown to be well represented by a quasi-linear4 Kelvin–
Zener FOV solid with the fractional order of evolution being
about 0.25.

In this paper, we present a K-BKZ viscoelastic model tai-
lored to the response of the human calcaneal fat pad loaded
in compression. The paper begins with a presentation of
the kinematic fields needed to construct such a theory. A
novel class of nonlinear elastic solids that has great potential
in the modeling of soft tissues is then presented. The K-
BKZ hypothesis employs the elastic strain-energy function
to establish the tensorial structure of the viscoelastic model.
Four elastic functions and five viscoelastic kernel functions
are considered as candidate models. The Akaike information
criterion (AIC) information theoretic (Burnham and Ander-
son 2002) is used to select the ‘best’ models for these two
material functions based on the compression and stress-relax-
ation experiments of Miller–Young et al. (2002). A power law
is found to be the best model for the elastic part of the re-
sponse, and a regularized fractional derivative (RFD) is found
to be the best viscoelastic kernel.

2 Kinematics

Consider a rectangular Cartesian coordinate system with
orthonormal base vectors e1, e2 and e3. We focus our atten-
tion on a mass point originally located by the set of coor-
dinates X = (X1, X2, X3) assigned at an arbitrary refer-
ence time t0 in this coordinate frame. At current time t , this

2 For the Newtonian FOV model, a fractional order of evolution
equaling 1 is the limiting case of a viscous Newtonian fluid, while a
fractional order of evolution equaling 0 is the limiting case of an elastic
Hookean solid.

3 Fractional-order integration and differentiation can be defined as
a single operator that is continuous over the order parameter; hence,
the term differ-integration (Oldham and Spanier 1974). The accepted
notation employs a minus sign (e.g., −0.4) when designating the order
of integration, and a plus sign (e.g., 0.4) when designating the order of
differentiation.

4 A viscoelastic model is said to be ‘quasi-linear’ if: the linear strain
(or forcing function) of classic (linear) viscoelasticity is replaced by
a nonlinear strain measure, the kernel (or memory) function depends
solely on time (i.e., strain-time separability applies), and only a onefold
integral over time appears in the model. K-BKZ models are quasi-linear.

mass element is located by a different set of coordinates
x = (x1, x2, x3) in the same coordinate frame, while at some
intermediate time – say s, t0 ≤ s ≤ t – it had coordinates
χ = (χ1, χ2, χ3).

It is supposed that the motion of this mass point through
space can be described by a one-parameter family (in time) of
locations considered to be continuous and sufficiently differ-
entiable to allow the following deformation gradients to be
defined

Fi j (t0, t) = ∂xi

∂ X j
, F̂i j (s, t) = ∂xi

∂χ j
, F̃i j (t0, s) = ∂χi

∂ X j
,

(1)

where indices i and j have values 1, 2, 3. Here these formulæ
have been written in component form; in tensor notation they
are written as

F = Fi j ei ⊗ e j , F̂ = F̂i j ei ⊗ e j , F̃ = F̃i j ei ⊗ e j , (2)

where ⊗ is the vector outer product. These fields satisfy
the identity F = F̂ F̃, or equivalently, Fi j = F̂ik F̃k j where
the repeated k index is summed over in the usual manner. The
ability to invert these fields is guaranteed by the conservation
of mass.

Deformation fields are two-state fields that can be scalar,
vector, or tensor valued. Hereafter, arguments denoting the
state dependence of these fields are omitted for brevity, at
least for the most part. Instead, as in Eq. (2), plain-symboled
deformation fields are considered to have a state dependence
of (t0, t); hatted deformation fields are considered to have a
state dependence of (s, t); and tilded deformation fields are
considered to have a state dependence of (t0, s).

Affiliated with the above deformation gradients are the
left- and right-deformation tensors defined by

B = FFT and C = FTF, (3)

respectively, where ‘T’ implies transpose (viz., Bi j = Fik Fjk

and Ci j = Fki Fk j ). By B̂ we mean F̂F̂T, etc. The left-defor-
mation tensor B of Finger (1894) typically appears in Eule-
rian constructions, while the right-deformation tensor C of
Green (1841) typically appears in Lagrangian constructions.

For model implementation into numerical codes, like fi-
nite elements, it is often useful to split the deformation vari-
ables into hydrostatic and deviatoric parts. Following Flory
(1961), we assign

J = det F, F̄ = J −1/3F, C̄ = F̄TF̄, B̄ = F̄F̄T, (4)

so that det F̄ = 1, and therefore, det C̄ = det B̄ = 1, where
det(•) denotes the determinant. Likewise, one can define

Ĵ = det F̂, ˆ̄F = Ĵ −1/3F̂, ˆ̄C = ˆ̄FT ˆ̄F, ˆ̄B = ˆ̄F ˆ̄FT, (5)

and

J̃ = det F̃, ˜̄F = J̃ −1/3F̃, ˜̄C = ˜̄FT ˜̄F, ˜̄B = ˜̄F ˜̄FT, (6)

so that det ˆ̄F = det ˜̄F = 1. A bar over a tensorial deformation
field implies that it is isochoric (preserves volume), while a
hat or a tilde placed on top of that designates the states for
which it is isochoric.
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3 Elasticity

Before one can construct a viscoelastic model for soft tis-
sues, it is necessary to quantify the highly nonlinear elastic
behavior that dominates soft-tissue response.

The strain-energy density per unit mass, when written for
the Lagrangian frame, is governed by

dW = 1

2�0
tr(S dC), (7)

where tr(•) is the trace operator, while dW (X; t0, t, dt) rep-
resents the work done over a time increment dt on a mate-
rial element with mass density � = �(x; t), where �0 =
�(X; t0). It follows that �0/� = det F from the conservation
of mass. Work is caused by an imposed displacement acting
on the mass element, manifested here as the strain increment
(1/2)dC(X; t0, t, dt). The material responds to this displace-
ment through the creation of forces, thereby producing a state
of stress S(X; t0, t) known as the second Piola–Kirchhoff
stress.

It is convenient to decompose stress into the additive sum

S = Sv + Sd , (8)

where Sv represents the volumetric (or spherical) contribu-
tion to S, while Sd represents the deviatoric (or distortional)
contribution to S. Hyperelasticity postulates that dW is an
exact differential, and as such, Eq. (7) becomes (cf. Simo
and Hughes 1998, pp. 359–361)

Sv =�0 J
∂Wv(J )

∂ J
C−1 and Sd =2�0 J −2/3Dev

[
∂Wd(C̄)

∂C̄

]
,

(9)

where Dev[•] = (•) − (1/3)tr[(•)C]C−1 is the Lagrangian
deviatoric operator. Here the elastic strain energy is consid-
ered to be the sum of separate volumetric Wv and deviatoric
Wd parts such that W (C) = Wv(J ) + Wd(C̄), thereby pro-
ducing like contributions to the state of stress, viz., Eq. (8).
Thermodynamics also requires the potential W to depend on
temperature; however, this dependency is usually ignored in
tissue mechanics, and will not be introduced here.

Consider a convex pressure/volume model whose spheri-
cal strain energy is given by (Simo and Hughes 1998, pp. 361)

�0Wv(J ) = κ 1
2

[
1
2

(
J 2 − 1

) − ln J
]
, (10)

which leads to a symmetric expression for hydrostatic pres-
sure of the form

p = −κ 1
2

(
J − J−1), or equivalently,

Sv = κ 1
2

(
J 2 − 1

)
C−1, (11)

with κ being the bulk modulus. Dilatation (1/2)
(
J − J−1

)
is a second-order accurate approximation to the dilatation of
Hencky (1928), viz., (1/2) ln det C (cf. Freed 2004).

There are two non-trivial invariants needed to describe
the deviatoric response of an isotropic elastic solid (Rivlin
1948); they are:

I = tr C̄ ≡ tr B̄ and II = tr C̄−1 ≡ tr B̄−1. (12)

Consequently, the tensorial dependence of Wd(C̄) can be
replaced by a scalar one of Wd(I, II ). The third invariant
is a trivial argument, because III = det C̄ = 1 by defini-
tion. An application of the Cayley–Hamilton theorem proves
the identity II = (1/2)

(
(tr C̄)2 − tr(C̄2)

) = tr C̄−1 because
det C̄ = 1.

Whenever an invariant appears by itself in a strain-energy
function, a deformation tensor ensues. Whenever the invari-
ant sum I + II appears, a strain tensor is produced. Desiring a
strain-energy function that yields strain fields, not just defor-
mation fields, while keeping in mind the stability constraints
of Renardy (1985)5, we introduce a class of elastic materials
whose deviatoric strain energy is described by

�0Wd(C̄) = μ 1
4

(
f ( p1; I ) − f ( p1; 3)

+ f ( p2; II ) − f ( p2; 3)
)
, (13)

where μ is the elastic shear modulus and pi is a vector of
parameters, which may have different values when associ-
ated with I and II . Function f is any function that belongs
to the class of dimensionless functions which satisfies the
following constraints:

physics: f ( p1; I ) ≥ 0 and f ( p2; II ) ≥ 0,
f ′( p1; 3) = 1 and f ′( p2; 3) = 1,

monotonicity: f ′( p1; I ) > 0 and f ′( p2; II ) > 0,
convexity: f ′( p1; I ) + 2I f ′′( p1; I ) > 0 and

f ′( p2; II ) + 2II f ′′( p2; II ) > 0,

(14)

where f ′(x) = d f (x)/dx and f ′′(x) = d2 f (x)/dx2. The
terms f ( pi ; 3) in Eq. (13) are constants introduced to nor-
malize the strain energy so that Wd ≥ 0.

The definition for strain energy given in Eq. (13) leads to
an elastic constitutive equation for the deviatoric response in
the Lagrangian frame of the form

Sd =2μJ −2/3 1
4

(
f ′( p1; I ) Dev[I]− f ′( p2; II ) Dev

[
C̄−2]),

(15)

where the 1/4 is introduced so that μ corresponds with the
classic definition of Lamé’s elastic shear modulus in the do-
main of infinitesimal strains. This physical interpretation of
μ applies to all models in our material class, because of the
second line of constraints in Eq. (14).

An application of the pull-back operator (Holzapfel 2000,
pp. 82–84) transforms the above Lagrangian formula into the
following Eulerian expression

JTd = 2μ 1
4

(
f ′( p1; I ) dev

[
B̄

] − f ′( p2; II ) dev
[
B̄−1]),

(16)

where dev[•] = (•) − (1/3)tr(•)I is the Eulerian devia-
toric operator. The second Piola-Kirchhoff stress S maps

5 Renardy’s lemma: A sufficient condition for strong ellipticity in a
K-BKZ fluid, and therefore in the deviatoric response of an isotropic
elastic solid, is that its strain-energy function be strictly monotone in I
and II , and strictly convex in

√
I and

√
II .
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into the Cauchy stress T(x; t) according to the well-known
formula JT = FSF T. Stress JT is called the Kirchhoff stress
with JTd being its deviatoric part. Strain (1/4)

(
B − B−1

)
is a second-order accurate approximation of Hencky strain
(1/2) ln B (cf. Freed 2004).

Choosing a functional form for f that is in accordance
with the constraints put forth in Eq. (14) will lead to an admis-
sible constitutive equation for the modeling of elastic solids.

4 Viscoelasticity

Because most tissues are predominantly elastic, with a sec-
ondary viscoelastic attribute, and because the elastic response
in these tissues is highly nonlinear, we believe that the K-
BKZ (Kaye 1962; Bernstein et al. 1963) hypothesis6 has an
advantage over other approaches when it comes to developing
viscoelastic models for soft tissues, the most notable alter-
native approach being that of internal state-variable theory
(Coleman and Gurtin 1967). The K-BKZ hypothesis takes
the potential structure for elasticity arising from thermostat-
ics and analytically continues it into neighboring states of
irreversibility where viscoelastic phenomena can exist. The
thermodynamic admissibility of this hypothesis is discussed
in a separate paper by Bernstein et al. (1964).

In soft-tissue mechanics, it is reasonable to assume that
only the deviatoric response is viscoelastic. There are appli-
cations where viscoelastic compressibility can be very impor-
tant (cf. Leonov 1996); however, the in vivo rate-controlling
relaxation mechanisms of soft tissues are not known to be
affiliated with volume change.

There are two material functions that arise from the K-
BKZ hypothesis. In the viscoelastic formulæ stated below, the
relaxation G and memory M functions can be of whatever
form one chooses. They are not specified by the construction.
However, they are constrained in that M(t−s) = ∂G(t−s)/∂s
and 0 ≤ M(t2) < M(t1) for all t2 > t1 ≥ t0 where G0 =
G(0) = 1 and G∞ = G(∞) = 0, in accordance with ther-
modynamics through what is called the principle of fading
memory (Coleman and Mizel, 1968). Examples of such func-
tions are presented in Sect. 5.

In the Lagrangian frame, the deviatoric response that
arises from an application of the K-BKZ hypothesis to the

6 Bernstein et al. (1963) state their hypothesis thusly: “For the Cole-
man–Noll fluid, the stress at time t depends upon the history of the
relative deformation between the configuration at time t and all config-
urations at times prior to t . To this idea we add the following notions:
(1) The effect of the configuration at time τ < t on the stress at time t is
equivalent to the effect of stored elastic energy with the configuration
at time τ as the preferred configuration. The effect depends on t − τ ,
the amount of time elapsed between time τ and time t . (2) The stress at
time t is the sum (integral) of all the contributions from all τ < t . . . .
In effect, we are taking the concept of a strain energy function associ-
ated with the theory of finite elastic deformations, which is formulated
in terms of a preferred configuration, and incorporating it in a fluid
theory of the Coleman–Noll type by treating all past configurations as
preferred configurations.”

elastic formula given in Eq. (15) leads to the constitutive
equation7

Sd = 2
(
μ∞ + (μ0 − μ∞) G(t)

)
×J −2/3 1

4

(
f ′( p1; Ī ) Dev[I] − f ′( p2; ĪI ) Dev

[
C̄−2])

+2(μ0 − μ∞)J −2/3

t∫
t0

M(t−s) 1
4

(
f ′( p1; ˆ̄I ) Dev

[ ˜̄C−1]

− f ′( p2; ˆ̄II ) Dev
[
C̄−1 ˜̄C C̄−1]) ds, (17)

where μ∞ and μ0 are the rubbery and glassy shear-moduli,
respectively. Time t0 is associated with a stress-free equilib-
rium state. The invariants present in the integrand evaluate

according to the formulæ ˆ̄I = tr C̄ ˜̄C−1 and ˆ̄II = tr ˜̄CC̄−1.
The deviatoric state of stress associated with the Lagrang-

ian frame Sd given in Eq. (17) pushes forward into the Eule-
rian frame yielding

JTd = 2
(
μ∞ + (μ0 − μ∞)G(t)

)
× 1

4

(
f ′( p1; Ī ) dev

[
B̄

] − f ′( p2; ĪI ) dev
[
B̄−1])

+2(μ0 − μ∞)

t∫
t0

M(t−s) 1
4

(
f ′( p1; ˆ̄I ) dev

[ ˆ̄B]

− f ′( p2; ˆ̄II ) dev
[ ˆ̄B−1]) ds. (18)

This formula, representing the Eulerian version of our model,
is likely to be more intuitive to the reader than its Lagrangian
counterpart stated in Eq. (17). Here one would evaluate the

invariants in the integrand according to the formulæ ˆ̄I = tr ˆ̄B
and ˆ̄II = tr ˆ̄B−1.

Like G and M , the elastic function f is left unspecified by
the general construction. It must, however, be constrained by
Eq. (14) so that the deviatoric response of the model satisfies
the K-BKZ stability criterion of Renardy (1985).

An integration algorithm with a unique memory manage-
ment scheme has been developed by the authors (Diethelm
et al., 2006) for the purpose of efficiently solving convolution
integrals like those found in Eqs. (17) and 18).

5 Viscoelastic kernels

There are numerous viscoelastic kernels (a relaxation/mem-
ory function pair) that have been proposed in the literature.
Here we consider five of them that have potential value in the
modeling of tissues; they are: the generalized Maxwell model
(GMM); the stretched exponential (KWW); the quasi-linear

7 The formulæ listed in Eqs. (17) and (18) were derived in the body
tensor formalism of Lodge (1964), and were then mapped into the Eule-
rian and Lagrangian spatial frames, respectively. A direct consequence
of Lodge’s field transfer operator is that the resulting spatial formulæ
are invariant of frame. At the request of a reviewer, these derivations
have been omitted to save space.
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viscoelastic model (QLV); the fractional-order viscoelastic
model (FOV); and a regularized fractional-derivative model
(RFD). The first three are well known, the fourth is known,
but apparently not to the biomechanics community, and al-
though the fifth has been used before, we shall demonstrate
that it arises from a certain regularization of the fractional
derivative.

5.1 GMM kernel

The eminently popular Maxwell model (MM) has the gener-
alized relaxation function of a decaying exponential

G(t) = exp
(−t

τ

)
, (19)

whose memory function is simply

M(t) = exp(−t/τ)

τ , (20)

with material constant τ (> 0) being called the characteristic
time.

The GMM is composed of a finite sum of N discrete MM
elements such that

G(t) =
N∑

n=1

cn exp
(−t

τn

)
,

N∑
n=1

cn = 1, 0 < τ1 < τ2 < · · · < τN , (21)

whose memory function is therefore

M(t) =
N∑

n=1

cn
τn

exp
(−t

τn

)
, (22)

where each term in the sum can be thought of as being asso-
ciated with a discrete integral. The sum over all cn equaling
1 enforces G0 = 1, while G∞ = 0 follows if τn > 0 for all
n; hence, GMM obeys the principle of fading memory under
these pretenses.

Generalized Maxwell model is the kernel that arises from
a system of first-order differential equations describing vis-
coelasticity when derived from the theory of internal-state
variables, with there being N internal variables (cf. Simo
and Hughes 1998, Chap. 10).

Any completely monotonic relaxation function, i.e.,
(−1)ndnG(t)/dtn ≥ 0 for all n = 0, 1, 2, . . ., possesses
a continuous relaxation spectrum H , which is defined as the
forcing function in the convolution integral G(t)
= ∫ ∞

0 e−t/τ H(τ ) dτ .8 Over a specified time or frequency
range, such a relaxation function can be approximated by a
discrete relaxation spectrum via the GMM kernel. Fulchiron
et al. (1993) and Simhambhatla and Leonov (1993) propose
using a Padé–Laplace technique to obtain optimum GMM
parameters, where a Padé expansion of chosen order is fit to
data in the Laplace domain wherein the problem becomes

8 Kernels KWW, QLV, FOV and RFD all have completely monotonic
relaxation functions.

well posed. The results are then transformed back into the
time domain for use. As a rule of thumb, about one Maxwell
chain is required for each decade of frequency response that
is specified by the particular boundary-value problem to be
solved.

Without exception (to our knowledge), GMM is the only
viscoelastic kernel preprogrammed into commercial finite
element codes that have viscoelastic material models bun-
dled with them.

5.2 KWW kernel

A popular relaxation function from the viscoelastic liquids
literature is the stretched exponential of Kohlrausch (1847)
and Williams and Watts (1970) (KWW), which for a solid is
given by

G(t) = exp
(
− ( t

τ

)β
)
, (23)

whose memory function is therefore

M(t) = β exp
(−(t/τ)β

)
t1−βτβ

, (24)

where τ (> 0) and β (0 < β ≤ 1) are the material constants.
This relaxation function is normalized in the sense that

G0 = 1 and G∞ = 0. The memory function is singular
at the origin, i.e., M0 = ∞ (given 0 < β ≤ 1), with M(t)
monotonically asymptoting towards M∞ = 0 with increas-
ing t . However, if β were allowed to be greater than 1, then
M0 = M∞ = 0 and the memory function would no longer be
monotonic, violating the principle of fading memory. Con-
sequently, 0 < β ≤ 1 in order for Eqs. (23) and (24) to be in
accordance with this physical principle.

5.3 QLV kernel

Quasi-linear viscoelasticity (QLV) was introduced into the
biomechanics literature by Fung (1971), with its relaxation
function not appearing until much later (Fung 1993, pp. 285).
When written as a generalized relaxation function, it becomes

G(t) = E1(t/τ2) − E1(t/τ1)

ln (τ2/τ1)
, (25)

with parameters τ1 (> 0) and τ2 (> τ1) designating material
constants, wherein

En(x) =
∞∫

1

y−n e−xy dy (26)

is the exponential integral. The QLV relaxation function sat-
isfies G0 = 1 and G∞ = 0. The memory function associated
with this relaxation function is more user friendly, it being
simply

M(t) = exp (−t/τ2) − exp (−t/τ1)

t
. (27)
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QLV has become the de facto standard for characterizing
soft-tissue viscoelasticity in the biomechanics literature.

The QLV relaxation function is not usually written in the
above format. Specifically, the rubbery modulus μ∞ does
not appear in the QLV literature; rather, a parameter c (> 0)
appears that relates the glassy modulus μ0 to the rubbery
modulus via μ∞ = μ0/[1+ c ln(τ2/τ1)], where c represents
the height of a box relaxation spectrum that begins at time τ1
and ends at time τ2. Because M0 = 1/τ1 − 1/τ2 is positive,
with M(t) monotonically decreasing to 0 as t → ∞, the
QLV kernel is found to be in accordance with the principle
of fading memory.

Puso and Weiss (1998) used the GMM kernel, employing
seven MM kernels, to discretize the QLV kernel so that they
could approximate QLV for implementation into a commer-
cial finite element code.

5.4 FOV kernel

Caputo and Mainardi (1971a,b) analytically continued the
standard viscoelastic solid (Zener 1948, pp. 43)[
1 + τ D

]
σ(t) = E∞

[
1 + ρ D

]
ε(t),

σ0+ = E∞
(

ρ
τ

)
ε0+, (28)

by replacing its derivatives in time D f (t) = ∂ f (t)/∂t with
the Caputo (1967) fractional derivative of order α in time
(cf. Podlubny 1999, pp. 78–81)

Dα
 f (t) = 1

�(1 − α)

t∫
t0

D f (s)

(t − s)α
ds, 0 < α < 1, t > t0,

(29)

thereby producing the constitutive equation[
1 + ταDα



]
σ(t) = E∞

[
1 + ραDα



]
ε(t),

σ0+ = E∞
(

ρ
τ

)α
ε0+, (30)

that we call the (Kelvin–Zener) FOV solid9, which becomes
the standard viscoelastic solid listed in Eq. (28) whenever
α = 1. Variables σ and ε represent engineering stress and
strain, respectively, with σ0+ = σ(t0+) and ε0+ = ε(t0+)
specifying their initial conditions at time t0+ (= t0 +ε, where
ε is a small positive number). This 1D model has four material
constants: E∞ (> 0) denotes the rubbery elastic modulus, α
(0 < α < 1) is the fractional order of evolution, τ (> 0)
represents the characteristic relaxation time, and ρ (> τ ) is
the characteristic retardation time, with E0 = (ρ/τ)α E∞ (>
E∞) establishing the glassy elastic modulus. See Mainardi

9 The Voigt FOV solid is defined by

σ(t) = E
[
1 + ραDα



]
ε(t),

while the (Maxwell) fov fluid is defined by[
1 + ταDα



]
σ(t) = ηαDα

 ε(t), σ0+ = ( η
τ

)α
ε0+ ,

where η is the viscosity, and now E∞ = 0.

(2002) for an overview on the use of the fractional calculus
in linear viscoelasticity.

An analytic solution to the FOV solid (Eq. 30) was ob-
tained by Caputo and Mainardi (1971a) through an applica-
tion of the method of Laplace transforms. They were able to
apply this technique to Eq. (30) because it is a linear differen-
tial equation, albeit of fractional order. The solution they ar-
rived at is a special case of Boltzmann (1874) viscoelasticity

σ(t) = E∞ε(t)

+(E0 − E∞)

⎛
⎝G(t) ε0+ +

t∫
t0

G(t−s)
∂ε(s)

∂s
ds

⎞
⎠ ,

(31)

where the FOV relaxation function is determined to be

G(t) = Eα,1
(− ( t

τ

)α)
, (32)

with

Eα, β(t) =
∞∑

k=0

tk

�(β + αk)
, α > 0, (33)

defining the two-parameter Mittag–Leffler function (cf. Pod-
lubny 1999, pp. 16–37). Equation (32) satisfies the constraints
G0 = 1 and G∞ = 0. The Mittag–Leffler function first ap-
peared as a relaxation function in the paper of Gross (1947),
where it was introduced in an attempt to remedy inconsisten-
cies present in the power-law creep function. Gross did not
connect the Mittag–Leffler relaxation kernel with the frac-
tional calculus. That took place later in the papers of Caputo
and Mainardi (1971a,b).

After an integration by parts and an application of the
additivity of infinitesimal strains (i.e., ε(t0, t) = ε(t0, s) +
ε(s, t) for all s ∈ [t0, t]), Boltzmann’s viscoelastic model
(31) becomes

σ(t) = (
E∞ + (E0 − E∞) G(t)

)
ε(t0, t)

+(E0 − E∞)

t∫
t0

M(t−s) ε(s, t) ds, (34)

where now the reference state is s in the strain variable that
lies under the integral sign. This is consistent with the physical
notion that interval [s, t] constitutes that part of the deforma-
tion history which the material recollects, while the preceding
interval [t0, s) represents that part of the history which the
material has forgotten. Equation (34) is the small-strain 1D
version of Eqs. (17) and (18).

The FOV memory function applicable to Eq. (34) is

M(t) = − Eα,0
(−(t/τ)α

)
t

, (35)

where, notably, Eα,0(x) appears in the memory function,
while Eα,1(x) appears in the relaxation function. The deriva-
tive dEα, β(x)/dx , which is required because of M(t − s) =
∂G(t − s)/∂s, can be found in Podlubny (1999, pp. 22), for
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example. This memory function also appeared in the paper
of Gross (1947), but it was written as −dEα(−(t/τ)α)/dt ,
where Eα(x) ≡ Eα,1(x) is the one-parameter Mittag–Leffler
function (wherein β = 1). Gross did not make use of the two-
parameter Mittag–Leffler function Eα,β(x). The FOV mem-
ory function has not reappeared in the viscoelastic literature
since its introduction some 60 years ago.

One needs to be careful to distinguish between the Mit-
tag–Leffler function Em,n(x) (especially the one-parameter
Mittag–Leffler function En(x)) and the exponential integral
En(x), all of which are their accepted notations.

Relaxation functions described in terms of the Mittag-
Leffler function, as occur in phenomenological FOV models,
arise naturally from the statistical mechanics of random walks
made with steps taken at random intervals (Douglas 2000).
Exponential relaxation occurs whenever the steps are taken
at a uniform interval in time.

In the thesis of Adolfsson (2003, paper 1), the Voigt FOV
relaxation spectrum was discretized to obtain analytic for-
mulæ for the Maxwell chain coefficients cn given that τn =
nτ/N , n = 1, 2, . . . , N , with τ being the characteristic relax-
ation time from the Voigt FOV model. For a value for α of
0.67 (typical of synthetic polymers) he found that the normal-
ized relaxation function predicted by 10,000 MM elements
to be in about 1% error with that of the Voigt FOV relaxa-
tion function, the relaxation function obtained by using 1,000
MM elements to be in about 2% error, and when 100 MM
elements were used it was in about 5% error. This demon-
strates a clear advantage of the FOV kernel over the GMM
kernel, provided that the FOV kernel is the ‘correct’ kernel
for a given material.

Doehring et al. (2004) applied the QLV and FOV kernels
to stress relaxation and cyclic data obtained from heart-valve
tissues, and found their errors in predictive capability to be
similar. FOV had an advantage over QLV in their parame-
ter estimation, as only two of QLV’s three parameters were
observed to be sensitive to the data. Parameter τ2 was found
to be insensitive, at least to relaxation data. This is a well-
known fault of QLV. However, we did not experience this
difficulty when fitting the relaxation data for the heel pad
discussed in Sect. 6, as τ2 was found to lie within the time
interval of the relaxation experiment.

The authors (Diethelm et al., 2002, 2004, 2005) have
developed a numerical method capable of solving the frac-
tional differential equation found in Eq. (30).

5.5 RFD kernel

Single-integral finite-strain (SIFS) viscoelasticity (Johnson
et al. 1996) employs a relaxation function of the type G(t) =
δ/(δ + t) that can be analytically continued as a power law
so that the relaxation function becomes

G(t) =
(

δ

δ + t

)α

, (36)

whose affiliated memory function is just

M(t) = α δα

(δ + t)α+1 , (37)

whereα (> 0) and δ (> 0) are the material constants. Williams
(1964) was the first to use this kernel, where it was used to
describe the relaxation behavior of solid rocket propellants.
He called it the modified power law.

Here G0 = 1 and G∞ = 0, as required, and M0 =
α/δ with M(t) monotonically decreasing toward M∞ = 0,
thereby ensuring that RFD possesses a fading memory kernel.

This kernel is not an Abel kernel, although it is similar
in many respects. Specifically, Eq. (36) is not the Voigt FOV
kernel G(t) = t−α/�(1 − α) associated with the fractional
derivative in Eq. (29). In the Voigt FOV kernel, G0 = ∞ and
G∞ = 0, and therefore, the derivative is singular at the upper
limit of integration. Rather, Eq. (36) is a kind of regularized
fractional derivative (RFD) kernel whose relaxation func-
tion G is normalized so that G0 = 1. This is accomplished
by pushing the singularity outside the interval of integration
by a small distance δ (relative to t) so that Caputo’s deriv-
ative, Eq. (29), for 0 < α < 1, is regularized in the sense
that

Dα
δ f (t) = 1

�(1 − α)

t∫
t0

D f (s)

(t + δ − s)α
ds,

δ > 0, δ/(t − t0) � 1, (38)

where the singularity is moved to t + δ. The Voigt FOV ker-
nel and the RFD kernel are indistinguishable at large t . It is
only when t < δ that these two kernels differ significantly.
Exponent α can therefore be interpreted as a fractional order
of evolution. Similarities and differences between the Voigt
FOV and RFD kernels have been quite thoroughly investi-
gated by Bagley (1987).

The RFD kernel is not the only way in which a frac-
tional derivative can be regularized. Two alternative meth-
ods have been proposed in the mathematical literature. The
first one, completely different from the modified power law
of RFD, is based on a discretization of the fractional deriv-
ative—see, e.g., Tuan and Gorenflo (1994a,b). The second
one, described by, e.g., Rubin (1996, Sect. 11) or Gorenflo
and Rubin (1994), is much closer to, but not identical with
the RFD concept. Their method to tackle the singularity in
the Voigt kernel mentioned above is very simple: Instead of
using the full (and singular) integration range from t0 to t in
the definition of the Caputo derivative, Eq. (29), they only
integrate from t0 to t − δ with a certain (positive but small)
regularization parameter δ, thus cutting off the part of the
interval where the singularity appears; it still occurs at time
t . Compared to our approach, their method has the charm
that the correspondence between the kernel (t − s)−α and
the forcing function f (s) remains unchanged, whereas, our
scheme shifts one factor by an amount of δ but does not shift
the other factor simultaneously. This feature seems to be an
advantage of the method of Gorenflo and Rubin. On the other
hand, their cut-off strategy means that in an actual compu-
tation of the fractional derivative, which is supposed to be
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a functional with full but fading memory, the contribution
that is associated with the most recent past (the time interval
from t − δ to the current time t) is ignored completely; but
our method retains this information.

In this section, we have introduced five different visco-
elastic kernel functions. Answering the question “Which ker-
nel function is best for a given material?” is the subject of the
next section.

6 Akaike information criterion

“Truth in the biological sciences and medicine is extremely
complicated, and we cannot hope to find exact truth or full
reality from the analysis of a finite amount of data. Thus,
inference about truth must be based on a good approximat-
ing model. Likelihood and least squares methods provide a
rigorous inference theory if the model structure is ‘given.’
However, in practical scientific problems, the model is not
‘given.’ Thus, the critical issue is, ‘what is the best model
to use.’ This is the model selection problem.” (Burnham and
Anderson 2002, pp. 47)

We have used theory to provide mathematical (tensori-
al) structure to a class of material models that contains a
known (finite) set of candidates. However, theory is unable,
at least in our case, to discern which candidate model is ‘best’,
especially since our models are nonlinear. We therefore de-
sire a methodology whose outcome will objectively select
the best model from this set of candidate models when fit
against known data prone to noise. We refrain from subjec-
tively assigning the model, which is accepted practice in the
biomechanics literature of today. Instead, we employ the AIC
– a technology for use in model selection via multi-model
inference. Other criteria also exist (see, e.g., Burnham and
Anderson 2002, pp. 65–70). AIC is based on the principle of
parsimony: a compromise between bias-squared (simplicity:
increases with decreasing numbers of model parameters) and
variance (complexity: increases with increasing numbers of
model parameters). AIC uses maximum log-likelihood infer-
ence to obtain ‘optimum’ parameter estimates for each can-
didate model. These estimates, in conjunction with the objec-
tive function, are then inputs into a Kullback–Leibler (KL)
information-theoretic that is used to discern the ‘best’ model
for inference, selected from the set of fitted models. The se-
lected ‘best model’ need not be the ‘model that fits best’.

Consider an optimization problem where:

• K is the number of candidate models,
• L is the dimension of unknown parameters p = [p1,

p2, . . . , pL ]T,
• M is the dimension of state variables y = [y1, y2, . . . ,

yM ]T, and
• N is the number of observed variables yi = [y i

1 , y i
2 , . . . ,

y i
M ]T,

{
ti ; y i

j

}i=1: N
j=1: M , with ti being the associated times

of observation.

Consider the special case where:

1. errors between observations yi and yi+1 are independent
∀ i ∈ {1, . . . , N −1},

2. errors in observations yi are normally distributed about
the solution y(ti , p̂), with p̂ being the optimum parameters,

3. errors between y i
k and y i

� are independent for all k = �
over all the i , and

4. a constant coefficient of variation exists in the observa-
tions y i

j , which is independent of j over all the i .

If the above conditions hold, then Baker et al. (2005) have
shown that the maximum log-likelihood estimate reduces to a
weighted least-squares estimate whose weights are elements
from the inverse of the covariance matrix of errors, which
permits a dimensionless objective function to be defined as

�(p) =
N∑

i=1

M∑
j=1

(
y j (ti , p) − y i

j

y i
j

)2

, (39)

implying a least-squares coefficient of variation of σ = 1;
whereas, the maximum likelihood estimate for the coefficient
of variation in the data is given by

σ 2 = 1
M N

�(p̂). (40)

Akaike’s (cf. Burnham and Anderson 2002, pp. 60–64) mea-
sure for multi-model inference is then quantified via

μAIC = M N ln
(
�(p̂)

) + 2(L + 1) + 2(L + 1)(L + 2)

M N − L − 2
,

(41)

wherein the �(p) of Eq. (39) has been minimized to get the
maximum likelihood estimates p̂ for the model parameters,
whose dimension L may vary from model to model; however,
dimensions M and N remain fixed. The last two terms on the
right-hand side of μAIC correct for model bias in the sense of
KL information theory. The ‘best’ model for the purpose of
inference is the one with the smallest or most negative μAIC.

Confidence intervals can be assigned to each parameter
p̂� in p̂. If we denote p̃� = [ p̂1, p̂2, . . . , p̂�−1, p̃�, p̂�+1, . . . ,

p̂L ]T such that p̃� ∈ [pmin
� , pmax

� ](χ2
1 ), then confidence inter-

vals are obtained by (Venzon and Moolgavkar 1988)

M N
∣∣ln(

�(p̃�)
) − ln

(
�(p̂)

)∣∣ ≤ χ2
1 , (42)

wherein χ2
1 is the χ2-distribution for one degree of freedom,

which for the 0.95 quantile is 3.841, for example. �(p̃�) var-
ies only parameter p� from optimum p̂ in a search for those
values pmin

� and pmax
� that will satisfy the equality in Eq. (42).

For a given data set, a ‘best’ model can be obtained by
employing the straightforward methodology outlined above.
But will this model be the ‘best’ for another data set? Maybe
not. Rules have been developed that allow one to dismiss
those models that are not likely to ever be ‘best’, while retain-
ing a subset of ‘good’ models. Begin by constructing the AIC
differences

�i = μAICi − K
min
k=1

μAICk . (43)

One then applies the following rule to infer which models are
‘good’, which are ‘mediocre’ and which are ‘poor’ (Burnham
and Anderson 2002, pp. 70):
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Table 1 Optimized parameters μqs, μdyn, n1, and n2 for the quasi-static and dynamic elastic responses of the human calcaneal fat pad in unconfined
compression, cf. Figs. (1) and (2)

f ′(x) μqs (kPa) μdyn (kPa) n1 n2 � σ μAIC �i

xn 0.691 2.214 2.59 n2 = n1 5.5662 0.2395 175.0 0
xn 0.685 2.177 5.08 1.29 5.5414 0.2390 176.7 1.7
enx 0.700 2.274 0.708 n2 = n1 5.6306 0.2409 176.1 1.1
enx 0.692 2.227 1.40 0.405 5.5722 0.2397 177.3 2.3

�i Level of empirical support for model i
0–2 Good model
4–7 Mediocre model

> 10 Poor model

It is not the absolute size of the AIC measure μAIC that mat-
ters, but rather, it is the relative value of the AIC difference
�i that is important. The above rule is based on the weight
of evidence in favor of model i being the actual KL ‘best’
model for the problem at hand, given that one of the candi-
date models is actually this model; in other words, this rule
has a solid footing in information theory.

7 Human calcaneal fat pad

Soft tissues are comprised primarily of water, whose bulk
modulus is 2.2 GPa. Most of these tissues have shear moduli
that typically range from a kPa to hundreds of MPa. Conse-
quently, the ratio of their bulk to shear moduli usually lies
between 10 and 100,000, depending on the tissue. For the fat
pad of the heel, this ratio is about 100,000, making incom-
pressibility an excellent assumption to impose for this tissue.

7.1 Elastic behavior

Few tissues in the human body are isotropic. The calcaneal
fat pad in our feet has been demonstrated via experiment to
be isotropic (Miller–Young 2003). This makes the heel pad
an ideal tissue to work with for the purpose of deciphering
mathematical structure, and to assess capability of the AIC
information theoretic in model selection through multi-model
inference. Extending the structure of our model to anisotropic
tissues is a topic for future work.

There are a variety of functional forms for f that one
could investigate which will satisfy the constraints laid down
in Eq. (14). We shall consider four models constructed from
the following two mathematical functions:

f (x) = 1
n+1 xn+1, n > 0, x ∈ {(I/3), (II/3)},

f (x) = 1
n enx , n > 0, x ∈ {I − 3, II − 3}. (44)

Parameter μ is common to all models, while the parame-
ter vectors pi are equal (i.e., p1 = p2 = {n}) in two of the
models, and distinct (viz., p1 = {n1} and p2 = {n2}) in the
other two models. The power law has a long history in tissue
mechanics, dating back to Mitton (1945), but more prominent
in the biomechanics literature of today is the exponential law
advocated by Fung (1967).

We proceed by acquiring maximum log-likelihood esti-
mates for the unknown material parameters in each of the
four candidate models, along with a suite of statistical param-
eters: the objective function �, the coefficient of variation in
the data σ , the AIC information theoretic μAIC and the AIC
difference �i ; all defined in Sect. 6. These values have been
tabulated in Table 1. Quasi-static and dynamic experiments
were fit simultaneously–see Figs. 1 and 2. It was postulated
and verified that only the shear modulus μ exhibits a rate
dependence, whereas n is rate insensitive in a statistical sense,
which is why there are two shear moduli reported in Table 1;
they are the shear moduli belonging to these two experiments,
and are not to be confused with the viscoelastic rubbery μ∞
and glassy μ0 shear moduli introduced in Sect. 4.

By employing the methodology from information the-
ory presented in Sect. 6, an examination of the data pre-
sented in Table 1 allows one to conclude that the power-
law and exponential models are both ‘good’ candidates for
the modeling of unconfined compression in the human heel
pad, with the power-law being only slightly better in this
instance. The power law has an additional practical advan-
tage over the exponential in that it is more efficient and robust
in a finite element setting. For both function types, the mod-
els with n1 = n2 were found to be superior to their affili-
ated models where n1 = n2. The additional parameter pres-
ent in the models where n1 = n2 brought no added value
to these models from the perspective of information theory,
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Fig. 1 Quasi-static stress/stretch response to 50% deformation at
λ̇ = −10−3 s−1. Experimental mean and standard deviation data (ob-
tained from 10 feet) are from Miller–Young (2003)
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Fig. 2 Dynamic stress/stretch response to 50% deformation at
λ̇ = −35s−1. Experimental mean and standard deviation data (obtained
from 7 feet) are from Miller–Young (2003)

allowing the simpler models where n1 = n2 to be selected.
Herein lies the true worth of the AIC information theoretic:
models with differing numbers of material parameters can be
assessed objectively to determine which is best. AIC provides
a metric for the Kullback–Leibler (KL) information space by
which distances can be measured between various mathemat-
ical models (via the AIC differences �i ) whose parameters
are all fit against a common data set.

Fits of the power-law model (using Eqs. 16 and 44 with
n1 = n2) to the quasi-static and dynamic, experimental data
sets of Miller–Young et al. (2002) can be found in Figs. 1
and 2. Although not perfect, these fits are within experimen-
tal variation up to about 45% compression (λ = 0.65). There
is too much curvature in the model to correlate the quasi-
static data with exacting precision. In contrast, there is not
enough curvature in the model to accurately correlate the
dynamic data. The model should therefore provide reason-
able approximations of reality over a wide range in dynamic
input. Placing 95% confidence intervals around the param-
eters of this fit (see Eq. 42) puts n ∈ [2.30, 2.85], while
μqs ∈ [0.48, 0.90] kPa and μdyn ∈ [1.55, 2.89] kPa. These
are maximum-likelihood confidence intervals, which need
not be symmetric about their optimum values, as is the case
with least-squares confidence intervals.

7.2 Viscoelastic behavior

Contrary to most soft-tissue testing, the experiments of
Miller–Young et al. (2002) were not preconditioned. They
were done in unconfined compression beginning from a state
of static equilibrium, and under this boundary condition and
an assumption of incompressibility, Eq. (18) simplifies to

T11 = F

A
= λF

A0
= 2

(
μ∞ + (μ0 − μ∞) G(t)

)
× 1

4

(
f ′(p1; I ) (λ2 − λ−1) + f ′(p2; II ) (λ − λ−2)

)

+2(μ0 − μ∞)

t∫
t0

M(t−s) 1
4

(
f ′(p1; Î ) (λ̂2 − λ̂−1)

+ f ′(p2; ÎI ) (λ̂ − λ̂−2)
)

ds, (45)

where I = λ2 + 2λ−1 and II = 2λ + λ−2 are the invariants
with λ being replaced by λ̂ in Î and ÎI , which are arguments
in f ′. Here F is the applied force, A0 and A are the initial and
current cross-sectional areas, and λ = �/�0 and λ̂ = �/�s are
the two stretches present, with �0, �s , and � representing the
respective initial, intermediate and current lengths of a gage
section scribed to the specimen.

Because the loading history was not recorded by Miller–
Young (2003) for their stress-relaxation experiment, we were
forced to impose an idealized loading history. This is not
desirable (Doehring et al. 2004; Gimbel et al. 2004), but it
is the best one can do in this case. A deformation rate of
λ̇ = −100 s−1 was assumed, which is in the vicinity of
the uppermost capabilities of modern servo-hydraulic test-
ing equipment. This rate was applied for 0.004 s to produce a
final stretch of λ = 0.6 that was then held fixed for 1 min. This
loading history allows the integral in Eq. (45) to be decom-
posed into the sum of two integrals. The first integral is over
the interval of loading t ∈ [t0, t1], and the second integral is
over of the interval of relaxation t ∈ [t1, t2]. For this partic-
ular experiment, t0 = 0 s, t1 = 0.004 s and t2 = 60 s. The
advantage of breaking the integral into a sum of two integrals
is that the second integral vanishes under the boundary con-
ditions of stress relaxation, because λ̂ = 1 for all s ∈ [t1, t2],
and therefore, the forcing function (viz., strain from s to t) is 0
over the entire region [t1, t2]. All arguments t in the integrand
of Eq. (45) remain t whenever t > t1. Only the upper limit
of integration gets changed from t to t1 in the contributing
integral.

Following the method of approach used to select an elastic
model, first a set of candidate viscoelastic kernels was cho-
sen, and then the AIC information theoretic was employed to
down-select the better models at describing a specified exper-
imental data set; in this case, the stress-relaxation experiment
of Miller–Young et al. (2002). The set of candidate models
chosen for consideration includes: FOV, GMM, KWW, QLV,
and RFD, which are defined in Sect. 5.

Because the loading data were not recorded, we assigned
a value of 2.6 to the exponent n in the previously selected
elastic power-law function f ′(x) = xn of Eq. (44), where no
distinction is made between p1 and p2, i.e., p1 = p2 = {n}.
This value is in agreement with our findings from fitting the
elastic data, and with the observation that it is the shear modu-
lus μ, not the strain exponent n, that exhibits rate dependence.
In all models except GMM, this leaves four parameters to be
obtained via parameter estimation techniques, whose values
are listed in Table 2.

Parameters in common betwixt all five models include
the rubbery μ∞ and glassy μ0 elastic shear moduli, and the
elastic stretch exponent n = 2.6. Except for GMM, each ker-
nel has a relaxation/memory function pair with two material
parameters that we denote as c1 and c2 in Table 2. These are
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Table 2 Optimized shear moduli μ∞ and μ0, and viscoelastic kernel parameters denoted as c1 and c2 (see the body of the text for the mappings
to their specific model parameters) for a stress relaxation of the human calcaneal fat pad, cf. Fig. 3

Model μ∞ (kPa) μ0 (kPa) c1 c2 � σ μAIC �i

FOV 0.707 4.04 0.472 0.389 0.00143 0.0114 −50.1 3.1
KWW 0.921 4.64 0.263 0.272 0.00166 0.0123 −48.4 4.8
QLV 0.965 3.41 0.0059 31.8 0.00229 0.0144 −44.9 8.3
RFD 0.711 3.79 0.366 0.069 0.00108 0.0099 −53.2 0

not the notations that exist in Sect. 5, so here we establish
their mappings and their units: for FOV, c1 = α and c2 = τ
(s); for KWW, c1 = β and c2 = τ (s); for QLV, c1 = τ1 (s)
and c2 = τ2 (s); and for RFD, c1 = α and c2 = δ (s).

According to the selection criteria put forth in Sect. 6,
RFD is a ‘good’ model for inference, FOV lies on the bound-
ary between ‘good’ and ‘mediocre’, while both KWW and
QLV are ‘mediocre’ models in this regard for this material.
Given this fact, RFD is the model of choice. The computa-
tional effort required to evaluate the RFD kernel is less than
the computational effort required to evaluate any of the other
kernels – an added bonus. The ability of RFD to correlate
these data is demonstrated in Fig. 3. We reiterate that this
selection process is based on the a priori assigned set of can-
didate models, and on the experimental data set chosen to fit.
Different results are likely to follow given different materials,
data sets, and candidate models.

This outcome of RFD being the ‘best’ model for infer-
ence came as somewhat of a surprise to us. Our personal bias
going into this exercise would have been to select the FOV
kernel; this bias being based on many physically sound rea-
sons. Biomechanicians would be apt to preselect QLV based
on the biases of their backgrounds. The fact that QLV is not
a good model for plantar soft tissue agrees with the recent
findings of Ledoux et al. (2004). The capability of the RFD
kernel, which is a generalization of the SIFS kernel proposed
by Johnson et al. (1996), and the ease by which it can be com-
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Fig. 3 Stress relaxation response at 40% deformation (λ = 0.6).
Experimental mean and standard deviation data (obtained from 7 feet)
are from Miller–Young (2003). The mean maximum true stress was
−12.7 kPa

puted cannot be disputed. Other than around the origin, the
RFD kernel is not all that different from the Abel kernel of
the fractional derivative present in the Voigt FOV model, or
the Mittag–Leffler kernel present in the Kelvin–Zener FOV
model, but it is a lot easier to work with. In effect, the RFD
kernel slides the singularity at the upper limit of integration
in the Voigt FOV kernel so that it lies just outside the inte-
gral by a small distance of δ. We coined the acronym RFD
from the phrase regularized fractional derivative, because it
behaves like an Abel kernel whenever t � δ, but it does
not propagate a shock wave with infinite velocity like the
Voigt FOV kernel does due to the regularization imposed
on the RFD kernel, viz., G0 = 1 for the RFD relaxation
function.

For the RFD model, placing 95% confidence intervals
around the parameters puts: μ∞ ∈ [0.702, 0.721] (kPa),
μ0 ∈ [3.75, 3.83] (kPa), α ∈ [0.363, 0.369] and δ ∈ [0.066,
0.072] (s), with n fixed at 2.6 in accordance with our elas-
tic findings. These confidence intervals are very tight when
contrasted with those obtained for the elastic model. This is
because of the high precision of fit attained with the relaxa-
tion data, as contrasted with the more moderate fit achieved
with the compression data. The above confidence interval for
μ∞ lies within the confidence interval for μqs obtained ear-
lier in this section, implying consistency between the data
sets.

Conspicuously absent from the prior discussion is the
GMM model, which is the de facto standard of the visco-
elastic literature at large. The number of Maxwell chains
(i.e., MM elements) considered will affect the number of
material parameters present in any given GMM model. It is
not uncommon in the literature to find investigators using
upwards of seven to ten Maxwell elements in order to get a
reasonable fit to a given set of experimental data. Nowhere,
to our knowledge, has the AIC information theoretic been
employed to answer the question: how many MM elements
yield the ‘best’ GMM model for a given data set?

However, this very question has been asked, and answered,
from the viewpoint of statistics, where the meter stick has
been the minimum of some objective function. The outcome
of this process is the seven to ten MM elements that are typ-
ically employed, with the actual number of Maxwell chains
needed in any given instance being dependent upon the actual
data being fit.

We now answer this same question using AIC as the me-
ter stick. AIC is a marriage between statistics and informa-
tion theory that enables multi-model inference. Presented
in Table 3 are the maximum likelihood estimates for the
parameters in three GMM moels with increasing numbers
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Table 3 Optimized parameters μ∞, μ0, τ1, c2, τ2, c3, and τ3 for modeling stress relaxation in the human calcaneal fat pad using the GMM kernel
function

MM elements μ∞ (kPa) μ0 (kPa) c1 τ1 (s) c2 τ2 (s) c3 τ3 (s)

N = 1 1.12 3.45 1 1.16 – – – –
N = 2 0.992 3.76 1 − c2 0.50 0.229 10.0 – –
N = 3 0.861 3.76 1 − c2 − c3 0.45 0.181 5.05 0.119 47.6

Table 4 Akaike information criterior (AIC) statistics for parameter estimates listed in Table 3

MM elements � σ μAIC �i

N = 1 0.11748 0.1033 −8.9 44.3
N = 2 0.00233 0.0146 −33.7 19.5
N = 3 0.00081 0.0086 +9.6 62.8

of MM elements. Table 4 presents their associated AIC sta-
tistics. If one were to use the objective function � as the
meter stick, or equivalently, the coefficient of variation σ ,
then N = 3 MM units would obviously be the best, and it
would be better than any of the models presented in Table 2.
Most likely, this could be improved upon still further by us-
ing even more MM elements. However, the AIC measure for
multi-model inference μAIC overwhelmingly selects N = 2
as being the ‘best’ GMM model for the calcaneal fat pad.
The parameters of the N = 2 GMM model best represent the
‘information’ present within the data amongst the various
GMM models. Interestingly, this is the number of Maxwell
chains used by Miller–Young (2003), where she reported val-
ues of τ1 = 0.5 s and τ2 = 24 s. We are in agreement on the
former value but differ on the latter. Our differing values for τ2
are likely due to the fact that we obtained our parameters from
maximum log-likelihood estimates, whereas Miller–Young
obtained hers from nonlinear regression estimates. We also
employed different elastic models. Furthermore, the ramp
time t1 that she imposed in her analysis was not documented.

Comparing the best GMM model against any of the pre-
vious four models via their AIC differences �i ranks the
best GMM as being a ‘poor’ material model for inference
according to the criteria put forth in Sect. 6.

8 Summary

An elastic strain-energy function has been proposed to have
great potential for the field of tissue mechanics. An appli-
cation of the AIC information theoretic led to a power-law
form of this free energy as being the best choice for the pur-
pose of describing compression in the human calcaneal fat
pad. The elastic material behavior associated with this free-
energy function was then analytically continued into the ther-
modynamically irreversible domain of viscoelasticity via the
K-BKZ hypothesis. With this overall mathematical structure
in hand, and with the tensorial structure that the K-BKZ
hypothesis provides (as applied to our elastic strain-energy
function), a new class of viscoelastic materials arises. A sec-
ond application of the AIC information theoretic selected the
RFD as being the best choice for the relaxation/memory func-

tion kernels present in our material model for the purpose of
describing stress relaxation in the fat pads of our feet.

We have found the AIC information theoretic to be a tech-
nology of great utility in biomechanics applications, yet it is
apparently an unknown technology to this discipline. It is
therefore our hope that biomechanicians will find our expla-
nation of it to be straightforward and easy to exploit. AIC
provides a means whereby we can enhance our understand-
ing of the mathematical models that we use to describe the
various behaviors that tissues exhibit.
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